Homoclinic Solutions for a Class of Nonlinear Difference Equations

نویسندگان

  • Ali Mai
  • Zhan Zhou
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Homoclinic Solutions for a Class of Nonlinear Second-order Differential Equations with Time-varying Delays

In this paper, by using Mawhin’s continuation theorem of coincidence degree theory, we obtain some sufficient conditions for the existence of homoclinic solutions for a class of nonlinear second-order differential equations with timevarying delays. Moreover, we give an example to illustrate the feasibility of obtained results. Our results are completely new.

متن کامل

Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations

By using the critical point theory, we establish some existence criteria to guarantee that the nonlinear difference equation ΔΔpnΔxn − 1 δ − qnxn δ fn, xn has at least one homoclinic solution, where n ∈ Z, xn ∈ R, and f : Z × R → R is non periodic in n. Our conditions on the nonlinear term fn, xn are rather relaxed, and we generalize some existing results in the literature.

متن کامل

Existence of Homoclinic Orbits for a Class of Nonlinear Functional Difference Equations

By using critical point theory, we prove the existence of a nontrivial homoclinic orbit for a class of nonlinear functional difference equations. Our conditions on the nonlinear term do not need to satisfy the well-known global Ambrosetti-Rabinowitz superquadratic condition.

متن کامل

Infinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian

We employ Nehari manifold methods and critical point theory to study the existence of nontrivial homoclinic solutions of discrete p-Laplacian equations with a coercive weight function and superlinear nonlinearity. Without assuming the classical Ambrosetti-Rabinowitz condition and without any periodicity assumptions, we prove the existence and multiplicity results of the equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014