Homoclinic Solutions for a Class of Nonlinear Difference Equations
نویسندگان
چکیده
منابع مشابه
Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملHomoclinic Solutions for a Class of Nonlinear Second-order Differential Equations with Time-varying Delays
In this paper, by using Mawhin’s continuation theorem of coincidence degree theory, we obtain some sufficient conditions for the existence of homoclinic solutions for a class of nonlinear second-order differential equations with timevarying delays. Moreover, we give an example to illustrate the feasibility of obtained results. Our results are completely new.
متن کاملExistence of Homoclinic Solutions for a Class of Nonlinear Difference Equations
By using the critical point theory, we establish some existence criteria to guarantee that the nonlinear difference equation ΔΔpnΔxn − 1 δ − qnxn δ fn, xn has at least one homoclinic solution, where n ∈ Z, xn ∈ R, and f : Z × R → R is non periodic in n. Our conditions on the nonlinear term fn, xn are rather relaxed, and we generalize some existing results in the literature.
متن کاملExistence of Homoclinic Orbits for a Class of Nonlinear Functional Difference Equations
By using critical point theory, we prove the existence of a nontrivial homoclinic orbit for a class of nonlinear functional difference equations. Our conditions on the nonlinear term do not need to satisfy the well-known global Ambrosetti-Rabinowitz superquadratic condition.
متن کاملInfinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian
We employ Nehari manifold methods and critical point theory to study the existence of nontrivial homoclinic solutions of discrete p-Laplacian equations with a coercive weight function and superlinear nonlinearity. Without assuming the classical Ambrosetti-Rabinowitz condition and without any periodicity assumptions, we prove the existence and multiplicity results of the equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014